
(NASA-CR- 18
CE ACA GI D
R E Ll A EILITY

EC AO4/HP
5EI;ort (v i

.

124U) THE
l S l I 3 l E C l P D

G E Q t l l hEUE
r g i n i a u n i

PO1

Annual Progress Report

Contract No. NAG-1-260

THE IMPLEMENTATION AND USE OF ADA ON DISTRIBUTED
SYSTEMS WITH HIGH RELIABILITY REQUIREMENTS

Submitted to :
National Aeronautics and Space Administration

Langley Research Center
Hampton, Virginia 23665

Attention: Mr. Edmund H. Senn
ACD, Computer Science and Applications Branch

Submitted by :
J. C. Knight

Associate Professor

I B P L E H E L I A I I O B A N D USE
SYS’IEEL kIIH HIGH

1187-2 8 2 5 5

L I S Annual Erogress
0 .) 7 C Avail: BXIS Unclas

CSCL 09B G3/61 0093166

b

Report No. WA/528213/CS85/106
January 1985

SCHOOL OF -ENGINEERING AND

APPLIED SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

b

UNIVERSITY OF VIRGINIA

CHARLOTTESVILLE, VIRGINIA 22901

The Implementation and Use of Ada On Distributed Systems

With High Reliability Requirements

Annual Progress Report

John C. Knight

Department of Applied Mathematics and Computer Science

University of Virginia

Charlottesville

Virginia, 22901

January 1985

CONTENTS

1. Introduction

2. Implementation Status

3. Sequencer Control Language

4. Transporting The Sequencer To The Apollo Network

5. Ada And Hardware Fault Tolerance

5.1 Failure Semantics

5.2 Distribution Semantics

5.3 Communication

6. Ada And Software Fault Tolerance

6.1 Exceptions

6.2 N-Version Programming

6.3 Recovery Blocks

6.4 Conversations

7. Professional Activities

References

Appendix 1

Appendix 2

1

4

8

16

22

26

28

29

31

32

33

35

37

42

44

45

48

1

1. Introduction

*
The purpose of this grant is to investigate the use and implementation of Ada

in distributed environments in which reliability is the primary concern. In

particular, we are concerned with the possibility that a distributed system may be

programmed entirely in Ada so that the individual tasks of the system are

unconcerned with which processors they are executing on, and that failures may

occur in the software or underlying hardware.

Over the next decade, it is expected that many aerospace systems will use Ada

as the primary implementation language. This is a logical choice because the

language has been designed for embedded systems. Also, Ada has received such

great care in its design and implementation that it is unlikely that there will be

any practical alternative in selecting a programming language for embedded

software.

The reduced cost of computer hardware and the expected advantages of

distributed processing (for example, increased reliability through redundancy and

greater flexibility) indicate that many aerospace computer systems will be

distributed.

for advanced aerospace embedded systems.

The use of Ada and distributed systems seems like a good combination

During this grant reporting period our primary activities have been:

(1) Continued development and testing of our fault-tolerant Ada testbed on our

DEC VAX 111780.

* Ada is a trademark of the US. Department of Defense

2

(2) Relocation of the testbed to a network of Apollo DN300 professional

workstations.

(3) Consideration of desirable language changes to allow Ada to provide useful

semantics for failure.

(4) Analysis of the inadequacies of existing software fault tolerance strategies.

(5) The preparation of various papers and presentations.

A summary of the various implementation activities of our fault-tolerant

Ada testbed are described in section 2. The sequencer has been given a new,

relatively sophisticated control language, and it is described in section 3. A major

part of our effort has been the relocation of the testbed to the Apollo network, and

this activity is described in detail in section 4.

- In our analysis of the deficiencies of Ada, it has been quite natural to consider

what changes could be made to Ada to allow it to have adequate semantics for

handling failure. In section 5, we describe some thoughts on this matter reflecting

what we consider to be the minimal changes that should be incorporated into Ada.

These thought are included in a programming language that is a variant of Ada

that we call Ada 2. The design of Ada 2 is fairly complete and will appear in a

PhD dissertation shortly [l]. We include a summary of some aspects of Ada 2 in

section 5.

We consider it to be important that attention be paid to software fault

tolerance as well as hardware fault tolerance. The reliability of a system depends

on the correct operation of the software as well as the hardware. Software fault

tolerance is rarely used in practice and when it is used, it is ad hoc with no

formalism or organization. One of the reasons for this state of affairs is the general

3

inadequacy of existing proposals for building software in a fault-tolerant manner.

Before reviewing Ada and trying to incorporate software fault tolerance

mechanisms into the language changes we consider necessary, we have reviewed the

state of the art and prepared a systematic set of criticisms of existing proposal for

the provision of fault tolerance in software. This set of criticisms is summarized

in section 6. These criticisms have lead us to develop a new language facility for

backward error recovery called the colloquy. This construct is briefly introduced in

section 5 but is described in detail in Appendix 2.

During the grant reporting period we have made various reports about this

work. O w activities in this are2 ;ire described in section 7. Appendix 1 contains an

example program that has been run on the testbed. Appendix 2 contains a paper

about our work in software fault tolerance that has been submitted to the

Fifteenth Symposium on Fault-tolerant Computing to be held in Michigan in

June.

4

2. Implementation Status

We have continued our implementation activities of both the testbed and the

associated translator. The translator translates a subset of Ada which includes

most of the tasking and exception handling mechanisms into code for the virtual

processors implemented by the testbed.

Some parts of the testbed have had to be redesigned and reimplemented as a

result of obtaining a more accurate understanding of the way in which Ada

operates. In many cases, the language definition is very obscure and it is quite

difficult to determine exactly what is meant. In other cases. the semantics are

comprehensible but extremely complex making an accurate implementation

difficult. An area that has given us a great deal of diiliculty is the exception

mechanism. It appears relatively. simple and straight forward as first but the many

possibilities for exception generation during processing of declarations for example

makes an accurate implementation very difficult. Our implementation of the

exception mechanism has been redesigned and the implementation has been revised.

The overall state of the implementation can be gauged from the fact that the

simple program that we have used as an example in various papers and

presentations has been successfully executed using the translator and the testbed.

The source text of the program that was executed is contained in appendix one of

this report. A small number of other tests have been run and used to find errors in

the translator and testbed. We are just beginning a systematic effort to debug the

system.

The system continues to run on a single VAX using UNIX processes to

We had simulate computers and UNIX pipes to simulate communications facilities.

5

intended to use a network

The use of the VAX/UNIX

of IBM Personal Computers as the target of this testbed.

combination has always been viewed as an interim step

that allowed us to develop the software in a relatively convenient and friendly

environment. Clearly the facilities of the IBM PC are relatively limited although

probably adequate with sufficient care. The major problem of porting the testbed

to the IBM PC’s would be the very long compile times resulting from the slow

processor, the small memories, and the use of floppy disks.

Our department has been fortunate in receiving funds for the purchase of

some Apollo workstations. At the time of writing, the department has ten

workstations connected together via a token-ring bus, and the network also has a

300 Megabyte disk system. They are equipped with relatively large main

memories, and in general are more powerful computers than the IBM PC’s. We

feel the Apollos are more appropriate for the support of the testbed. The Apollos

also support a variant of UNIX which makes them somewhat compatible with the

testbed as developed on the VAX.

In order to avoid spending inordinate amounts of time investigating the

idiosyncrasies of the Apollo system or building pieces of support software, we

decided to wait until other research projects had successfully used the Apollos and

demonstrated that they could provide the facilities we need before we attempted

to use them. An early effort to use the Apollos [21 showed that they could provide

Pascal support and communications’ support but the speed of communication was

very low. The reason for the slow speed is the approach used by the Apollos for

user-originated inter-node communication. All such traffic has to go through a

disk-based mail box with the result that the transmission speed is disk limited.

We decided that the perfrormance was adequate given the other inefficiencies of

6

our testbed and proceeded to move the entire system to the Apollo network. That

transfer has been completed and the system is now operational on the Apollos.

The details of the process involved in moving the system to the Apollos are

described in section 4.

As well as replacing the control language for the sequencer, we have replaced

the interface that each physical processor provides to the experimenter. Recall that

each physical processor supports an arbitrary number of abstract processors, and

that each abstract processor supports an arbitrary number of virtual processors

(Ada tasks). In the VAX implementation, each physical processor is actually a

U i I X process but it is equipped with a terminal whicn appears to be an operator’s

console. On the Apollo network, each physical processor is actually a DN300

workstation which is equipped with a monitor. To allow the experimenter to keep

track of the activities that are under way on each physical processor, we have

implemented a series of displays that the experimenter can arrange to be displayed

on the operator’s console for the physical processor of interest. Each of these

displays is updated as execution proceeds and displays are provided to show:

(1) the overall status of the physical processor,

(2) the status of each abstract processor on that physical processor,

(3) the status of each virtual processor on that physical processor,

(4) all the current breakpoints for all the virtual processors on that physical

processor,

(5) the status of all the simulated I/O devices on that physical processor.

These displays will be extended and enhanced as we discover what information is

most interesting to the experimenter. Even now however, we find the information

7

very useful, and, for example, can show the way in which the abstract processor’s

time is being multiplexed among the virtual processors.

I

8

3. Sequencer Control Language

Recall that the testbed is trying to allow experimenters to answer "what if,."

questions about concurrent Ada programs. The sequencer control language is the

experimenters interface with the testbed and so its form and facilities are

extremely important.

Why is control of parallel programs any different from sequential programs?

The reason is that "what if..." questions about tasking cannot be answered easily

(sometimes never) because, in most implementations, a set of tasks cannot be forced

into the necessary state that leads to the "what if."" question. This is not the case

with sequential languages because they are deterministic. In most debugging

systems for sequential languages there is a singlestep facility whereby effects of

individual instructions within a program can be studied in detail. Concurrent

languages, on the other hand, are nondeterministic There is no guarantee that a

particular state of interest is reached on any given execution. For example, suppose

a set of Ada tasks is executing asynchronously on the Ada testbed with the

scheduler controlling which task runs when. The experimenter may be interested

in asking questions such as: What would happen if this particular task were

forced into a certain state in its execution and this other task were forced to stop at

a specsc point in its execution?" and then "What do the contents of memory look

like for a particular virtual processor at this point?". These questions are typical of

those asked for controlling parallel programs. This is the level of control that is

essential for the monitoring and experimentation of these Ada tasks. Hence, the

main function of the command language is to provide the facilities for performing

this control. Control is needed not only to singlestep individual tasks, but to

single-step them in relation to each other.

9

The command language interpreter provides the interface between the user

command level and the sequencer module of the testbed. It receives the command

line, interprets it, and passes the validated information to the rest of the sequencer

which is then responsible for actually performing the actions to carry out these

commands.

In the design of the sequencer command language, there are basically two

elements essential to the design for control of Ada tasks. They are the ability to

monitor, in some meaningful way, the tasking activity so as to understand the

behavior of the parallel tasks, and the ability to perform experiments based, either

implicitly or expiicitiy on the information gathered. 1 hrough the interaction of

these two elements, the user can attempt to gain an understanding of the causes of

-_

existent errors or at least to note where the implementation and the expected

behavior of the parallel tasks differ.

The overall strategy that is taken in the design of the command language is to

control Ada tasks, not to debug Ada programs. First, the testbed must be viewed

from an operational semantic defhition standpoint: semantic in that it pertains to

answering questions of language meaning; operational in that it allows programs to

be executed and their actions to be observed. Furthermore, the definition must

provide the ability to answer the "what if..." questions

Given these general requirements, we established the following minimal set of

detailed requirements for control of the sequencer and hence the testbed:

(1) Starting a desired experiment. This requires the availability of the compiled

Ada code to be interpreted and the map showing how the abstract processors

for the experiment are to be mapped to physical processors.

10

Executing named tasks. This requires a list of the task names (any number)

that the experimenter wishes to start executing. This command was

originally separate but it has been included with the command for restarting

tasks which have been stopped. This was done since the involved tasks are

each at their own fixed code location and the one command for starting could

then be viewed as a set of tasks being suspended at a particular breakpoint

(breakpointing being the ability to temporarily halt an executing program);

for the initial starting up of a task’s execution then this breakpoint would be

defined at location zero. The start would always be from a current

brmkpint.

(3) Exiting from the existing test environment. A provision must be made to

allow the experimenter to have a summary of important system information

listed upon exit.

(4) Stopping or artificially suspending named tasks no matter what they are

doing. As with starting task execution, a list of the tasks, again any number,

the user wishes to stop or suspend must be given. A common example of a

situation that would use this command would be one in which there was the

desire to observe temporary suspension of all but one process in order to

eliminate interference from any of the other processes.

(5) Causing a particular abstract processor (AP) to fail. Since a major point of the

testbed is to see if software strategies can tolerate processor failures, the

experimenter should be provided with the ability to fail any processor.

Giving the AP number of the particular AP to be failed would cause the

physical processor owning the subject AP to cease to schedule it.

11

Setting and unsetting breakpoints. The general problem regarding breakpoints

involves the desire to have tasks suspended in the middle of statements. Since

AP code may be shared among tasks, specification of breakpoints by location

only is insufficient. Therefore, a breakpoint has to be defined such that it is

named by the source-level task name (task id) and a code location. It is also

considered desirable that the effects of a breakpoint be delayed so that a task

must execute that code location more than once before "hitting" the

breakpoint. This latter facility .is required to provide more flexibility to the

user and his desire to perform experiments with loops or end conditions

Restarting tasks' execulions. As Liexribed above, a Si of &task iiaiiie w-ould be

given to start or resume any number of tasks executing. This would allow the

named tasks to run until they encounter a breakpoint or terminate. The

ability to restart task execution is important because many fault-tolerant

strategies call for automatic replacement of defective hardware.

Single stepping a particular task. This would require the name of the task

that is to be involved and the number of instructions that are to be executed

before the subject task is temporarily halted; absence of the count should yield

a default of single stepping the named task through the interpretation of

exactly one instruction. This capability would allow a user to deal with tasks

through a perspective which is more microscopic than the Ada source language

level. For instance, each process can be brought to the desired state by

executing to a breakpoint set for that process and single stepping for fine

adjustment from there.

Displaying the sequencer's tables. These displays would provide a quick and

useful reference of which tasks are running, where and what there current

12 I

breakpoints are, etc

(10) Displaying the state of the testbed's data structures. This level of control

would be valuable in decisions that must be made regarding branches. The

user could breakpoint before the branch, display the memory contents and

decide what to do next on the basis of that. All of these display capabilities

would provide the means of monitoring whether the fault-tolerant strategy

that is being tested works or not.

(11) Calling upon a help facility. This would permit the user at any time before,

during, or after the experiment to view the available commands that are

allowed; syntax and usage of each command wouid be provided.

(12) Recalling commands. This would allow the experimenter to look at a log of

commands that he has used.

With this set of command facilities, the experimenter will have a good basis

for implementing the kind of control that is needed in a first, elementary, but

useful control mechanism for Ada tasks. It satisfies the two elements initially

described as essential to the control of Ada tasks: it possesses commands to allow

the ability to monitor the tasking activity at a microscopic level and it provides

the ability at any moment of the inspection to perform experiments as to the

future endeavors of those tasks. This set is by no means complete and there exists

a lot of remaining issues that require investigation before further expansion of the

control mechanism can be made.

Listed below are the actual commands of the command language interpreter as

presently implemented:

13

NEW

Start an experiment.

program must be given.

The names of the files containing the AP'to PP map and

QUIT

Exits an experiment without having a summary dump listed.

QUITD

Exits an experiment and has a summary dump listed.

RESUME

Starts or resumes any number of tasks executing; execution will stop when a

breakpoint is hit. The names of the tasks to be resumed must be listed; a',' in

place of the task name list will resume all currently started tasks.

STOP

Stops any number of tasks executing. The names of the tasks to be stopped

must be listed; an 'w in place of the task name list will stop all tasks that are

I'UMklg.

KILL

Causes one AP to be killed (failed). The AP number to be killed must be given.

BREAK

Sets a breakpoint according to a named location. The task name and address in

the task at which to set the breakpoint must be given. An optional count may

be given to indicate the number of times to execute the instruction before

stopping occurs; the default is one.

UNSET

Unsets a breakpoint according to a named location. The task name must be

14

given. An optional code offset may be given to indicate the address in the task

at which the breakpoint was set. If no code offset is given, all breakpoints for

that task are unset.

SINGLESTEP

Executes the named task one instruction at a time for the given number of

instructions. The task name must be given. A count is optional to give the

count of instructions to execute with the default being one.

DISPLAY APTOPPMAP

Displays the AP-number to PP-number map.

DISPLAY VPTOAPMAP

Displays the W-name to AP-number map.

DISPLAY TASKTOWMAP

Displays the task-id to VP-name table.

DISPLAY VPDATASTRUCTURE

Displays the VP data structure.

DISPLAY VPSTATE

Displays the state and location of the named VP.

DISPLAY BREAKPOINTS

Displays all of the breakpoints in the current experiment.

HELP

Displays all of the available commands with the ability to give a description of

each.

FLASHBACK

Displays the last speciiied number of commands. If no number is provided it

defaults to 15.

The command language interpreter also provides in its command language

several other capabilities and features including abbreviations for the commands,

good error handling and feedback of the error messages to the user, checks made on

all parameters, a UNIX-like MORE facility for certain commands like the

flashback command, and sensible screen layouts.

16

4. Transporting The Testbed To The Apollo Network

From the start of the project, we had attempted to keep the system portable

by segregating what we thought would be machine dependencies in the programs

into separate files. These are called "include files" because a compiler directive in

the main source file can cause the contents of these Ues to be included inline. The

intent was that the included files could be easily replaced by other include files

whose contents would be specific to the new machine. Up until this port, the

include files we had been using had been specific to the VAX under UNIX. The

original substitute include files had been specific to the IBM personal computers

running MS-DOS. The change of target from the IBM personal computers to the

Apollo workstations necessitated the construction of include files specific to these

machines and their operating system. This operation involves replacing

declarations and the bodies of Pascal procedures. Some procedures had to be given

null bodies. There were cases in which we had to create new procedures to

duplicate the functionality of certain "standard" Pascal features which were

missing in Apollo Pascal. Other procedures had included system calls and had to be

reprogrammed do deal with the different interface presented by the Apollo

operating system. Later in the project, we were forced to return to this step due to

an upgrade in the Apollo operating system.

Not all machine or system dependencies can be removed from the main source

files into include files. Most of these have to do with idiosyncrasies of the

compilers involved. Examples are the syntaxes required by the different compilers

for the "include" and "external" directives and the larger set of keywords

recognized by Apollo's extended version of Pascal. The latter necessitated a

systematic respelling of variable names. Due to the differing directory structures

17

of UNIX and the Apollo operating system, the pathnames for files named in

compiler directives had to be changed. Since copies of the machine specific include

files for both the VAX and the Apollos reside on the VAX, they cannot have the

same file names. We needed to change references to VAX-specific files to Apollo-

specific references. Apollo Pascal requires a separate explicit "open" call following

each "reset" or "rewrite". All instances had to be so modified. The VAX version

had needed to use UNIX "pipes", a tool which required us to give up the standard

input and output files in the interpreters and use other files to deal with the

terminal interface. On the Apollos, only the standard input and output files can be

-& for the terminal interface. This i-qtii-ed e& e ~ m i x e of the dtzrmtte file

names to be changed. On the VAX, the default size of integers is 32 bits, but

Apollo Pascal uses 16 bits instead. Uses of the type "integer" were systematically

changed to "integer32" in case the variable being declared needed that much room.

Some do.

We wanted to continue to maintain a single version of the system into which

we could incorporate any future enhancements and which could be automatically

modified to bring those enhancements to any targeted machine. The principal

instance of the testbed is the VAX version. In order to make enhancements to the

VAX version automatically available to the Apollo version, all of the

modifications described above needed to be automated. Thus we built JZters

(programs that transform program text) to accomplish these changes in a systematic

way and a shell script (a set of commands written in the UNIX command

language) to effect the transfer of files from the VAX to the Apollos. Finally, the

parser tables for the user interface (command interpreter) are represented in

binary. We had to create a pair of filters to convert these tables to text for the

18

transfer across machines and to convert them back into the binary format suitable

to the Apollos.

This system was apparently one of the first large set of files to be transferred

over the communications path between the VAX and the Apollos. Some of our

files would get across and others would not, and those which did get across often

had their contents altered which was only detected during attempts at compilation.

We had to make several attempts before we got all of the files transferred

proper 1 y .
Our attempts at compiling the system on the Apollos pointed out the errors in

transferring the source and some minor undocumented differences of the target

compiler. which do not perform packing ignore the

"packed" keyword. Apollo Pascal insists that it not occur. When we obtained a

successful cornpilation, we began to try to exercise those parts of the system which

required no Ada program to interpret.

Most Pascal implementations

During these tests, we found and corrected several items we had previously

overlooked. Despite our conversion programs for transferring them from one

machine to the other, the parser tables needed a different binary format than we

had given them. The filters had been incomplete in that they had not caught all of

the file names which neeed changing, and in that they had altered certain

declarations so as to produce anomalous behavior at execution time.

The pre-initialization portions of the interpreter and controller main

programs exist in machine-specific include files. We could not prepare much to go

into these files until we had experimented with initializing and operating the

Apollo communications mechanism. Similarly, the machine specific files having to

do with communication between interpreters and the controller in the testbed

19

contained calls to routines which had not been built.

In the interest of time and effort, we intended to reuse some low level

routines written (in C> for another researcher's project. These routines were to

provide access to the Apollo inter-node communications facilities, and a more

easily understood and used interface between our system and the Apollo operating

system. These routines turned out to be wholly unusable. We found that they

were misusing the Apollo primitives and almost always overwrote received

messages before returning to our code. It was about this time that the

aforementioned upgrade to the Apollo operating system occurred. Rather than try

to fix the borrowed routines, we determined to write our own (in Pascal).

Although the Apllos communicate among themselves in a ring network, all

user programmed communication must pass through a single user-written process.

This makes the Apollos resemble a star network. We had to write a program to

serve as the hub of this star network. There were also certain global or "own"

variables which had to be maintained for the communications routines to operate

properly. This necessitated the addition of another machine dependent include file

to the system. Some badly documented features of the Apollo operating system

hindered progress in building the communications interface. An example is the

status codes returned by system calls. The returned status code turns out to be a

record and one must check different fields of that record depending on what code

was returned. In other words, one must know what the returned status is in order

to determine which field to find its value. This caused some tests to show that

messages were not transmitted even though they had obviously been received.

Determining what the real problems were and finding ways to get around them

involved writing and running several programs other than the testbed system.

20

Once the required software was written and communication was established,

the tested's user interface needed to be repaired. UNIX and the Apollo operating

system have very different views of terminals, in particular of "raw mode". Under

UNIX, raw mode routines resemble interrupt handlers and there is the option of

detecting whether anything has been typed before being forced to read it in the

Pascal sense. The Apollos, on the other hand, do everything through a screen

manager which allows the user program to poll the keyboard but forces a read if

anything has been typed. We had to write routines which make read-without-

lookahead look like read-with-lookahead. In the process of repairing the user

b-terface, we discovered other prob!ems. -4s m example, snme fea.tures of the

interface were written as part of a student project. Rather than use the parser

which we were repairing, each of these features included its own. We had to track

down and individually repair each of these.

The files resulting from the port were transferred back to the VAX as the

archival and future enhancement site. The version obtained through all of the

modifications we had made was compared to the original VAX version. The

differences were largely in the files which were intended to be machine specific.

Certain changes, however, had pointed out portions of the system which had been

machine specific despite our early efforts. These portions were moved into the

appropriate files and the filters were run again to ensure that the new VAX version

could be transformed automatically into the Apollo version.

In conclusion, the entire testbed has been successfully moved to the Apollo

network and modified to operate there. It has run a set of elementary tests using

several Apollo computers and we are convinced that it is as operational as the

VAX version. The permanent version of the source code that is stored on the VAX

21

has been modified to include all the changes necessitated by the Apollo system.

22

5. Ada And Hardware Fault Tolerance

Nothing is stated in the Ada Language Reference Manual about how programs

are to proceed when a processor is lost in a distributed system although the manual

does specifically include distributed computers as valid targets. We have

summarized our concerns about Ada’s inability to deal with processor failure by

pointing out that the problem is basically one of omitted semantics. In particular

it was found that:

(1) Although tasks could be affected by the failure of a processor which contained

some context used by the task or some process it was communicating with, the

language did not specify what the effect should be. In other words the failure

semantics for Ada are incomplete.

(2) It was not clear what program units could be distributed, what the semantics of

distribution were, or what the syntax for specifing distribution was. The

distribution semantics for Ada are missing.

(3) There were many problems with communication between tasks. Not only could

a task be suspended indefinitely if it was communication with a task on a

processor which had failed, but timed and conditional entry calls did not

provide a task with the assurance that it could eventually continue.

We have proposed additional semantics to deal with this situation. The heart

of these additional semantics is the notion that the loss of a processor and

consequently the loss of part of the program can be viewed as equivalent to the

execution of abort statements on the lost tasks. Thus in all cases, failure semantics

would be equivalent to the semantics of abort.

23

We have also proposed a comprehensive mechanism for implementing these

semantics. This mechanism requires quite extensive changes to the execution-time

support for Ada but it is feasible as we have shown in our testbed implementation.

The use of abort semantics is not the most elegant approach. There are

numerous consequences that seem rather extreme if considered out of context. For

example, abort semantics imply that all the dependent tasks of a task that is lost

must be terminated even if they are still executing on non-failed computers. The

overwhelming advantage of abort semantics is that they do not require that the

language be changed.

A more elegant and clearly preferable approach in the long run is to modify

the language and to introduce language structures that include appropriate failure

semantics. During the grant reporting period we have been considering what form

these language structures might take.

Although Ada ignores this problem, other languages do not and language

designers have proposed various schemes in the literature. For example, Liskov has

proposed "guardians" [31. and "atomic actions" [41 have been proAr>osed by several

people. We have considered both, along with other schemes, as candidates for

inclusion in Ada. None of these proposals seem appropriate however because they

are not able to provide the performance level that is required in the kind of

applications for which Ada is intended. The naive introduction of atomic actions

into Ada would reduce performance substantially; probably making the language

worthless.

Given that language structures with more sophisticated semantics probably

cannot be added to Ada, we have considered what more modest changes could be

made that would be in the spirit of the language but would provide acceptable

24

performance. We have broken the lack of failure semantics in Ada into two parts

and addressed each separately. The two parts are entrapment in communication and

loss of context, both of which we have documented extensively in the past.

Entrapment in communication can be dealt with in a revised language much

like it is with abort semantics. Raising an exception in a task that is the subject of

entrapment is a reasonable way to inform the task of the problem and to provide a

mechanism to allow it to proceed. The difficulty that follows from something like

this is the subsequent dacul t with redirection of communication. Given that a

task has been lost and cannot be used in further communication, it is necessary to

mmmunicate with its alternate. Since A b (a p~.senf!y defined! x p i m that the

caller explicitly use the name of the callee in a rendezvous, a different call must be

used for the alternate. This means that all communication must be guarded

(probably by an IF statement) so that different entry calls can be made. This is a

large burden to put on the programmer, and it can hardly be described as elegant.

We have no well-defined suggestions on preferable language structures at this time.

We also observe that the Ada rendezvous makes no provision for broadcast

messages. There are plenty of occasions when a single task needs to communicate

with a whole set of other tasks; for example starting a set of real-time services or

informing a set of tasks about machine failure at the level of the application

software. This seems like a serious omission.

The loss of context problem is actually far more serious. With abort

semantics, loss of context requires that parts of the program be removed when this

may not be strictly necessary. One solution that we have considered is to require

that the general nesting structure of the program be reflected in the way tasks are

assigned to processors. For example, only tasks at the outermost level would be the

25

subject of controlled distribution. All nested tasks would be required to be

assigned to the same processor as their parent. This seems like a reasonable solution

since any loss of context takes with it all the objects that could reasonably use that

context. It is however a major restriction on the forms that programs may take.

The key problem with this type of limitation is that it may not be suitable at

all for certain applications. Consider for example a system which includes a

special-purpose hardware processor; a fast-fourier transform unit for example.

The Ada code which provides a m to the services of this unit will obviously

reside on the unit. The fast-fourier transform functions may be required from

 any parts of the program but the programmer might be reluctant to make these

routines global. Good programming practice may well dictate that such routines be

nested. Allowing nested objects to be distributed seems almost mandatory.

In considering this problem we have concluded that it really is essential to be

able to locate nested objects separately from their parents. To solve the resulting

loss of context problem, we propose that Ada’s scope rules be enhanced to include

objects that are distributable and have limited scope. We propose that the objects

to be distributed be a new form of package and that the scope of objects in the

package be limited to that package only. Access to the package would be through

the objects made visible in the specification of the package in the usual way.

Our consideration of this topic is not complete. We will continue to look at

desirable extensions to Ada and complete the definition of the enhanced

communications mechanism and the distributable packages. We include below

some our thoughts at this time about how Ada might be modified. We are defining

a revised version of Ada that includes all of these ideas called Ada 2.

26

5.1. Failure Semantics

Failure semantics consist of two parts. First those tasks that can be affected by

the loss of another task must be specified. Second the effect of the loss on them

must be given. In the previous solution abort semantics were extended to cover the

case of loss of a task by processor failure. This meant that dependents (in the Ada

sense) were affected; the effect was to abort all affected tasks. These semantics

ignore the important differences between aborting a task which can be thought of

as an effort to remove a useless part of a program and losing a task by failure

where the aim is to preserve as much of what remains as possible. In fact, a special

case had to be made for the main prcgrarrl, otherwi the bss of the rnzifi program

would result in aborting all non-library tasks.

Attempts to produce less destructive semantics run up against the problem

that the context usable by a program unit in Ada includes all enclosing scopes and

cannot be restricted. Further no distinction is made between run-time and

compile-time declarations so that a task which uses a package containing only type

definitions will depend on that package even though the package may not exist at

run-time.

Any attempt to restrict visibility, say by using import/export lists, runs into

the problem of avoiding restriction to an incomplete set of declarations. An

example will illustrate the problem:

type PAIR i s a r r a y (1 . . 2) o f INTEGER;

type LIST i s a r r a y (1 . . 100) o f PAIR;

LIST should not occur in an import list unless PAIR does. As import lists get long

it becomes difficult to avoid such omissions.

27

Both long import lists and incomplete import lists can be avoided by

encapsulating all declarations in declarative groups, each containing a complete list

of declarations. The declarations contained within a declarative group are

available within the begin-end part of the immediately enclosing unit.

Declarative groups can be named or un-named. A named declarative group can be

made available to another declarative group by mentioning its name in a with

clause. An un-named declarative group cannot be made available in this way,

consequently all declarations in an un-named declarative group are for strictly

local use only.

If a declarative group A is n a n d i~ a ~ i t h d a l ~ fer a dec!arative utnlin w--r €3

then the declarations in A must be mentioned in B before they can be used in B

remember that the declarations in B must be complete. This can be done in two

ways:

(1) A declaration from A can be referenced in B by mentioning its complete name

in B; for example, A.name.

(2)The name of A followed by a semicolon is equivalent to listing all the

declarations in A.

In Ada the role of a declarative group is one of the roles that can be assumed

by a package; it seems better to separate declarative group which never ends up as a

run-time entity (though the things declared in it might) from package which will

normally represent a run-time object. Nevertheless, to avoid having to surround

every package with a declarative group, it is convenient to treat a package

similarly to a declarative group, by requiring that the visible part be a complete

set of declarations and that access to the visible part be obtained by mentioning the

package name in a with clause.

28

Returning to failure semantics, the first step is to define the context of a

program unit to be the set of declarative groups and packages that it mentions in

its with clauses.

A declarative group (package) is said to be location-restricting if it declares

anything other than types and tasks. Similarly a package is said to be location-

restricting if its visible part declares anything other than types and tasks.

A program unit is location-free if none of the declarative groups and packages

in its context are location-free.

Below, only location-free program units will be allowed to be distributed; if

a program unit is not location-free its location is determined by the location of its

context. If the constituents of its context have different locations the program is

erroneous. A consequence of this is that the loss of a processor cannot effect the

context of a task at run-time, no action needs to be taken in this case. The other

possibility is the case where a task is affected by the loss of a task that it is trying

to communicate with. This is dealt with in section below.

5.2. Distribution Semantics

In the earlier work it was assumed that the only program unit which could be

distributed was the task. In fact, a much better case could be make for distributing

packages and, as tasks can always be encapsulated into packages, it is a more general

notion. Certainly if a task is to be called, the caller and the server must have some

common environment; the place for this to be specified is in the visible part of a

package (remember this must be a complete set of declarations), which contains the

server task.

29

Here it is important to carefully distinguish the information needed to create

a task, the information needed to use a task, and an implementation of the task. In

Ada if a task object is visible so that the task can be used then the type definition

will also be visible so that a copy of the task can be created. Although the task

can be hidden by using a package and renaming the entry calls as procedures, the

distinction between creation and use is so important that it is worthwhile to

express it more directly in the syntax of the language. The situation with the

implementation is even more striking. It is clear that although the functionality of

a task is defined by a single implementation, (ie. by its body) bottom up and t o p

down design both work because the functionality is easier to grasp than the

implementation. That being the case it would seem natural to let the same task

have several bodies in particular it might be desirable to implement a task in

different ways on different machines; using different speed/memory trade-offs for

example.

5.3. Communication

In a distributed system where processors can fail, every communication with

another processor may fail. It follows that unless a task is prepared to wait for a

reply that will never come the task must take precautions. What the task would

like to be able to do is to ensure that no matter what actions are taken by the

communication tasks this task will be able to proceed. This can be done by having

a time-out mechanism, mmuring the time waiting for the reply. Of cmrse, with

such a mechanism the timeout could come too m n and the task could proceed

before the reply arrived. When the reply did arrive it would have to be discarded.

30

It would then be possible for a task to be on several queues at the same time. Since

this can happen by accident, it might be desirable to let a task put itself onto

several queues anyway, as in the Intel surrogate call.

Further, if a caller must be prepared for the server to fail at any time, it

would cause no further hardship for the caller if the server were allowed to

manipulate the entry queues. In particular, a server should be able to take a call off

the queue, examine it, and if necessary return it to the queue.

Essentially the system would become a data-gram service where requests for

service would be done as well as p i b l e but nothing would be guaranteed. With

this understood, tasks could control their own destiny and no action need be taken

for tasks affected by the failure of atask that they were communicating with?

31

6. Ada And Software Fault Tolerance

We have examined the literature on fault-tolerant software with the goal of

determining the adequacy of Ada in providing a software fault tolerance

mechanism. We find that Ada makes no provision whatsoever for software fault

tolerance. Consequently we have considered what extensions to Ada might be

desirable to support fault-tolerant software.

In examining the literature we have concluded that the schemes that have

been proposed are inadequate in general and in many cases incomplete. In this

section we review the inadequacies of previous work in software fault tolerance.

A general consideration for crucial systems is time. Boolean acceptance tests

and voting codes must be reached and reached on time for the results to be useful

at all. A common problem, which we refer to as the unexpected delay problem, is

that some unanticipated circumstance, e.g. an infinite loop, may cause a particular

section of code to be executed too late for its results to be useful or not to be

executed at all. If a scheme does not address the unexpected delay problem, then it

is insufficient for providing software fault tolerance in a real-time program since a

program in that context needs only to be late to be considered faulty. Another

consideration for a fault-tolerance scheme is the management of complexity. If

the use of a scheme involves too much effort on the designer’s (programmer’s) part,

it may be counter-productive in that more faults will be generated through the

use of the scheme than would otherwise occur. Furthermore, a fault in the

app!ia?ion nf a fault-tolerance scheme might make the system more dangerous

than if fault tolerance-efforts had not been applied at all. A scheme supported by

a rigid, encasing, structured syntax allows design-time (compile-time) enforcement

32

of the accompanying semantic rules. Such a quality in a scheme allows for added

complexity without added faults.

6.1. Exceptions

Although claimed to be suitable for software fault tolerance, exception

handling can only deal effectively with anticipated faults, not the unanticipated

faults addressed by an actual fault-tolerance approach. A crucial system should

have anticipated faults removed before it is placed into service. Exceptions can be

*& within systems to reprent axd deal with expected, mrmd, but uxs~d

situations.

In most languages, but particularly in Ada, when an exception handler is

entered there is no indication of exactly from where control transferred. Neither

is there an indication of how much of the state has been damaged. These problems

make it difficult for a handler either to repair the fault and transfer back to the

point where the exception was raised, or to replace the execution of the remainder

of the "procedure".

Often the finite list of available exception names (even when user defined

names are included) is very general, such as in Ada: range-check, numeric-error,

constraint-error, and tasking-error. As a result, the exception could have been

raised in any of many statements (components), or in one of many places in one

statement. Consider, for example, the following statement:

I := A(J) + B(K) + C(L) + D(M);

If the execution of this statement raises a subscript error, there are four different

33

subscript that could be involved. Also note that the subscript violation is a

symptom of the actual fault. The actual fault might lie in the calculation of J or K

or L or M, or it might be in some decision computation that erroneously directed

control to this statement. Further, attempts to determine the extent of the damage

by examining values in the state could raise another exception. Since one fault

existed in the routine covered by the handler, it cannot be assumed that no others

will exist in a continuation that attempts the same algorithm. Since multiple

faults may have existed in that part of the routine already executed, ascribing the

erroneous state detected to one fault and "handling" that one may not correct the

skte at all. Indeed, 3 the fault to which the detected e r x r is m r i h d is nn? one of

the actual faults in the routine, the actions of the handler may cause even more

damage.

Exception handling involves predicting or enumerating the faults that may

occur in a system so a handler can be provided for each. This may be impracticable

in a complex system. A failure to predict an exception and provide a handler for

it could bring about the collapse of the entire control system or at the very least

wreak havoc within some part of it. If a handler is provided for an exception

with the expectation that that exception was only to be raised in one portion of a

routine, but it was actually raised in another portion or propagated up from a

component routine, the actions of the handler could be entirely inappropriate.

6.2. N-Version Programming

Although the method employs parallelism, it still implements software fault

tolerance in logically sequential parts of a system: It is not a concept or construct

34

for dealing with parallel programs.

The n-version programming proposals all assume that all versions will arrive

at the crosscheck points - they ignore the unexpected delay or infinite loop

problem.

The proponents of n-version programming claim that the scheme is

inherently more reliable than, say, recovery blocks. The reliability of the scheme

depends upon the reliability of the voting criteria and test for agreement. That is

just as volatile as the recovery block’s acceptance test. How to actually do the

voting is unspecijkd. There are discussions of different choices for dealing with

single numerical values, such as weighted sums, but not for the general case of a

vector of values of differing types. The discussions on voting on single numerical

results concludes that that is very difficult, but most applications are going to need

long vectors of results of differing types. It would seem that voting in an actual

control system might become impossible. The proponents have admitted that n-

version programming may not be applicable in many situations 151.

The n-version programming strategy depends upon the ability to create

independent versions or programs derived from the same specifkition. As for how

the independence of versions is to be achieved, there are appeals to the use of

independent programming teams using different languages. Problems may arise

from common programming experience and current fashions in algorithms, or even

from a specification that specifies too much.

As for the use of different programming languages and translators, that can be

a source for faults. Translators for different programming languages are likely to

use incompatible representations for even the simplest data structures, and will

certainly provide incompatible synchronization mechanisms. The software that
3

35

attempts to rectify these differences in preparation for distribution of inputs and

gathering and voting upon results, either becomes a bottleneck subject to single-

point failure or must itself be made fault-tolerant. If that software is made

fault-tolerant by n-version programming, the software providing the same service

for it comes into question, ad infinitum.

Implementing an n-version program is not as easy as the descriptions make it

out to be. It appears at first easy to do n-version programming in Ada - just put

each version in its own task and let them execute. But problems arise in obtaining

the results in order to vote on them and even in ensuring that all or most versions

even reach the crosscheck points! infinite imp probiems can occur, and arranging

for a faulty task to consent to a rendezvous with the driver is no mean feat.

Voting in general presents a centralized bottleneck and is therefore undesirable for

distributed applications.

6.3. Recovery Blocks

Since the recovery block concept relies on syntactic support from the

programming language in use, and Ada fails to provide this syntax, recovery blocks

cannot be used in Ada as presently defined. However, there are fundamental

technical problems with recovery blocks also and we review them in this section.

In a recovery block, there is only one test for acceptability of results. How to

program the acceptance test to be both meaningful and allow a wide range of

alternate algorithms to pass it is unspecified. Design diversity in the primary and

the alternates, combixied with the possibility of degraded service from the

alternates, implies that the acceptance test must not be made very strict. It must

be possible for any results of the primary or any alternate (assuming they are

correct) to pass the test, yet it must be strict enough to detect errors produced by

any of the primary or the alternates. This combination may not be possible. A

test that is general enough to pass all valid results might not be specific enough to

actually detect all errors within the construct. The strategies involved in the

primary and in the many alternates may be so divergent as to require separate

checks on the operation of each "try" as well as an overall check for acceptability

as regards the goal of the statement. The recovery block really needs multiple

tests, one for the primary and one specific to each of the alternate algorithms,

r- wrhaps with a general overall test a$ a check on the various individual tests.

Like n-version programming, the recovery block scheme depends upon the

generation of independent versions of software, in this case, to be used as the

primary and alternates. Due to the degraded service concept, the alternates do not

have to produce results so close as to be able to vote upon them, but they also need

a certain degree of independence to reduce the possibility that they will contain

the same or very similar faults. How to get independent versions for alternates is

not really addressed in the recovery block proposals.

The recovery block is strictly a sequential programming construct. It gives no

hint about recovery after inter-process communication. The conversation concept

is an appropriation of the recovery block concept, not an integral part.

There is the question of when a recovery block should be used. There is little

indication as to what portions of a program should be protected by recovery blocks.

If used on every routine and every statement sequence, the tests may become

trivial and fail to offer any benefit. If recovery blocks are only used at the

outermost levels, the acceptance tests may be so complex as to duplicate the

37

complexity of the primary or alternates. This may introduce more faults in the

acceptance test than the primary alone, or it may squander processing resources so

that execution of an alternate would bring about a timing failure.

The infinite loop problem and its generalization, the timing of control

program activities has remained unaddressed by the recovery block scheme.

How can we rectify the use of unrecoverable objects with the backward

recovery strategy? There is some discussion in the literature on how recovery

blocks could be reconciled with nested recovery block commitment to

unrecoverable objects.

The problem of the latency intervals for fault detection being longer than

commitment intervals is not addressed. That is related to the problem of how to

construct meaningful acceptance tests. It is assumed that acceptance tests can be

constructed that can detect errors before they become so wide spread, or that

multiple layers of nested recovery blocks' acceptance tests can together detect

them. The possibility of nested recovery blocks allowing such errors to "escape"

should not be permitted.

6.4. Conversations

As with recovery blocks, the use of conversations requires programming

Again, Ada fails to provide any but this is not too surprising

This is one of the major

language support.

since there are no satisfactory proposals in the literature.

shortcomings of conversations.

Conversations have been criticized in the past for failing to provide a

mechanism preventing "desertion". Desertion is the failure of a process to enter a

38

conversation when other processes expect its presence. Whether the process will

never enter the conversation, is simply late, or enters the conversation only to take

too long or never arrive at the acceptance testk), does not matter to the others if

they have deadlines to meet, as is likely in a crucial system. Thus, desertion is

another form of what we have called the infinite loop problem. The processes in a

conversation must be extricated if the conversation begins to take too long. Each

process may have its own view of how long it is willing to wait, especially since

processes may enter a conversation asynchronously. Also, a deserter can be

considered erroneous, but determining which process is a deserter could be diflicult.

Only the concurrent recovery block scheme even addresses the desertion problem.

The solution there is to enclose the entirety of each participating process within

the conversation. Not only can a process fail to arrive at a conversation, it cannot

exist outside of the conversation.

The original conversation proposal made no mention of what was to be done

if the processes ran out of alternates. Two presumptions may be made: that the

retries proceed indefinitely, which is inappropriate for a real-time system, or that

an error is to be automatically detected in each of the pr-, as is assumed in all

of the proposed conversation syntaxes. What the syntactic proposals do not address

is that, when a process fails in a primary attempt at communication with one

group of processes to achieve its goal, it may want to attempt to communicate with

an entirely different group as an alternate strategy for achieving that goal. This is

the kind of divergent strategy alluded to above. The name-linked recovery block

a i d !he converxtion monitor schemes do not mention whether it is an error for

different processes to make different numbers of attempts at communicating.

Although they may assume that is covered under the desertion issue, that may not

39

necessarily be true if processes are allowed to converse with alternate groups.

Russell’s work 161 permitting the application to have direct control over

establishment, restoration, and discard of recovery points has its own set of

problems. First of all, his premise ignores the possibility that the information

within a message can contaminate a process’ state. When the receiver of a message

is rolled back, he merely replaces the same message on the message queue. This was

the main “advantage” derived from knowing the direction of message transmission.

His application area is that of producerconsumer systems. The control systems we

are considering are feedback systems. A producer almost always wants to be

Sormed a b u t the effects of the grodl~c?, and a consumer almost a.!wa.ys wants to

have some influence over what it will be consuming in the future. The

relationships between sensors and a control system and between a control system

and actuators can be viewed as pure producerconsumer relationships, but sensors

and actuators are more accurately modeled as unrecoverable objects. The scheme

allows completely unstructured application of the MARK, RESTORE, and PURGE

primitives. This fact, along with the complicated semantics of conversations,

which they are provided to create, affords the designer much more opportunity to

introduce faults into the software system.

All of Kim’s proposals [71 use monitors for inter-process communication. In a

distributed system, monitors and any other form of shared variables are vulnerable

to extensive delays. While a monitor may be implemented as a fully-replicated

distributed database, most other implementations leave its information vulnerable

to processor failxre. With an independently executing process, as one would

simulate a monitor in -Ada, the application could decide upon appropriate times to

save copies for use by a replacement after reconfiguration. But the traditional

40

monitor is not active and long periods may pass without any process calling a

procedure that updates a replacement monitor's state.

Since the name-linked recovery block proposal makes no mention of the

method of communication among processes within a conversation, it remains open

to charges of permitting smuggling. If processes use monitors, message buffers, of

ordinary shared variables, other processes can easily "reach in" to examine or change

values while a conversation is in progress. Kim also states that ensuring proper

nesting of name-linked recovery blocks is impossible.

The conversation monitor is designed to prevent smuggling but, as Kim's

description stands, it allows a problem that is even more insidious than smuggling.

A monitor used within a conversation is initialized for each use of the

conversation, but not for each attempt within a conversation. This allows partial

results from the primary or a previous alternate to survive state restoration within

the individual processes. Since such information is in all probability erroneous, it

is likely to contaminate the states within this and all subsequent alternates.

Our conclusion from all of this is that Ada makes no provision for fault-

tolerant software but that none of the proposed technologies are really complete

and ready for use. Extensive work is needed to complete the theory before

practical use can be made in Ada and similar programming languages. We have

taken these various issues and dehed a new programming construct for backward

error recovery called the colloquy. The colloquy is presented as an extension to

Ada. In our opinion, all the deficiencies of previous proposals have been solved by

the colloquy, and it includes all previous solutions as special cases. The colloquy

has been written up in a paper which we have submitted to the Fifteenth

International Symposium on Fault-tolerant Computing. A copy of the paper is

41

included in Appendix 2 of this report. We are presently implementing the

colloquy in our Ada testbed.

42

7. Professional Activities

During the grant reporting period we have prepared several papers and made

various presentations about this work.

In May, we were invited to a workshop sponsored by Westinghouse Space and

Electronics Center in Baltimore Maryland. The purpose of the workshop was to

allow Westinghouse personnel to become familiar with various technologies for

crucial systems, and to expose researchers to the present and pending DoD-related

projects requiring very high reliability.

We were also invited to participate in a pne! session at the Distributed

Processing conference held in San Francisco in May. This panel addressed

distributed Ada and the other panel members were David Fisher from Gensoft

Corporation, Robert Firth from Tartan Laboratories, Bryce Barton from Hughes

Aircraft, and Dennis Cornhill from Honeywell. There was some agreement among

the panelists and substantial disagreement. Nothing that was said affected our

position on the inadequacies of Ada for distributed computing.

In the 1983annual report for tkh grant we included &pies of two papers that

had been submitted to the Fourteenth Fault-Tolerant Computing Systems

Symposium (FTCS 14). One of those papers (appendix 3 in that report) was

rejected. We disagree with many of the comments made by one of the referees and

have written to the conference organizers requesting clarification. The second

paper (appendix 4 in the report) was accepted and was presented at FTCS 14.

A lengthy paper describing most of our work on Ada in some detail was being

prepared when we submitted our 1983annual report. A preliminary version of

that paper was included in that report as appendix 5. That paper has been

43

completed and submitted to the IEEE Transactions on Software Engineering. After

ten months, we are still awaiting an editorial decision from that journal. A

shortened version of that paper was sent to AdaLETERS, the publication of the

ACM Special Interest Group on Ada, and appeared in volume IV, issue 3.

44

REFERENCES

(1 J.I.A. Urquhart, "On Languages for Programming Crucial Real-time

Applications on Distributed Systems", Ph.D. Dissertation, University of

Virginia, May 1985.

(2) J.N. Scott, "A Testbed for Distributed Operating System Development", MS.

Thesis, University of Virginia, September, 1984.

(3) B. Liskov and R. Scheifler, "Guardians and Actions: Linguistic Support for

Robust Distributed Programs," ACM Transactions on Programming Languages

and Systems, Vol. 5, No. 3.

(4) S. K. Shrivastava, "Structuring Distributed Systems for Recoverability and

Crash Resistance," IEEE Transactions on Software Engineering, Vol. SE-7, No.

4.

6) L . Chen and A. Avizienis, "N-Version Programming: A Fault-Tolerance

Approach to Reliability of Software Operation," Digest of Papers FTCS-8,

(6)D. L. Russell and M. J. Tiedman, "Multiprocess Recovery Using Conversations,"

Digest of Papers FTCS-9, June 1979.

(7) K. H. Kim, "Approaches to Mechanization of the Conversation Scheme Based On

Monitors," IEEE Transactions on Software Engineering, Vol. SE-8, No. 3.

45

APPENDIX 1

procedure EXAMPLE i s

task CALLER i s
pragma d i s t r i b u t e - t o (1) ;
pragma p r i o r i t y (1) ;

end CALLER;

task SERVER i s
e n t r y E;
p ragma d i s t r i but e-t o(2) ;
pragma pr i o r i t y (1) ;

end SERVER;

task ALTERNATE-SERVER i s
e n t r y ABNORMAL-START;
e n t r y E;
pragma d i s t r i b u t e - t o (1) ;
pragma p r i o r i t y (1) ;

end ALTERNATE-SERVER ;

task body CALLER i s

beg in
SYSTEM-STATE : in teger ;

SYSTEM-STATE := 1;
wr i te (1 .1) ;
I oop

MA I N-BLOCK :
beg in

i f SYSTEM-STATE = 1 then
w r i t e (l . 2) ;
SERVER. E;
w r i t e (1.3);

w r i t e (l . 4) ;
ALTERNATE-SERVER. E;
w r i t e (l . 5) ;

e l s e

end i f ;

when TASKING-ERROR=>
except i o n

SYSTEM-STATE := 2; - abnormal
end MAIN-BLOCK;

end loop;
end CALLER;

46

task body ALTERNATE-SERVER i s
beg i n

wr i t e (2 .1) ;
accept ABNORMAL-START;
I oop

wr i t e (2 .2) ;
accept E;
w r i t e (2 .3) ;

end loop;
end ALTERNATE-SERVER;

task RECONFIGURE-1 i s
e n t r y FAILURE(WH1CH : i n in teger) ;
pragma d i s t r i bu t e-t o (1) ;
pragma p r i a r i t y (2) ;
f o r FAILURE use a t 10;

end RECONFIGURE-1 ;

task body RECONFIGURE-I i s
beg in

I oop
w r i t e (3 , l) ;
accept FAILURE(WH1CH : i n integer) do

w r i te(3.2);
ALTERNATE-SERVER . ABNORMAL-START ;
wr i t e(3.3) ;

end FAILURE;

end RECONFIGURE-1 ;
end loop;

t ask ALTERNATE-CALLER i s
en t r y ABNORMAL-START ;
pragma d i s t r i b u t e - t o (2) ;
pragma pr i o r i t y (1) ;

end ALT ERNAT E-CALLER ;

task body ALTERNATE-CALLER i s
beg i n

w r i t e (4 , i) ;
accept ABNORMAL-START;
I oop

wr i t e (4 .2) ;
SERVER. E ;
wr i t e (4 .3) ;

end loop;
end ALTERhATE-CALLER;

t a s k body SERVER i s
beg i n

wri t e (5 . 1) ;
I oop

wr i t e (5 . 2) ;
accept E;
w r i t e (5 . 3) ;

end loop;
end SERVER;

t a s k RECONFIGURE-2 i s
e n t r y FAILURE(WH1CH : i n i n t e g e r) ;
pragma d i s t r i b u t e - t o (2) ;
pragma p r i o r i t y (2) ;
f o r FAILURE use a t 10;

end RECONFIGURE-2;

t a s k body RECONFIGURE-2 i s
beg i n

wri t e (6 . 1) ;
accept FAILURE(WH1CH : i n i n t e g e r) do

wr i t e (6 . 2) ;
ALTERNATE-CALLER . AENOWL-START ;
w r i t e (6 . 3) ;

end FAILURE;
end RECONFIGURE-2;

b e g i n

end :
n u l I ;

APPENDIX 2

A NEW LINGUISTIC APPROACH TO BACKWARD ERROR RECOVERY*

**
Samuel T. Gregory John C. Knight

Department of Computer Science

Charlottesville, Virginia, U.S.A. 22903
TJ=b+rersipj =f \7irgi=ia

(804) 924-7605

ABSTRACT

Issues involved in language facilities for backward error recovery in critical, real-time
systems are examined. Previous proposals are found lacking. The dialog, a new building
block for concurrent programs, and the colloquy, a new backward error recovery primitive,
are introduced to remedy the situation. The previous proposals are shown to be special cases
of the colloquy. Thus, the colloquy provides a general framework for describing backward
error recovery in concurrent programs.

Subject Index:
Reliable Software - Interprocess Communication and Synchronization

This work was sponsored by NASA grant number NAG1-260 and has been cleared for publication by the
sponsoring organiration.

D
Presenter at ma-15 if paper is accepted.

1. INTRODUCTION

In this paper we examine the issues involved in the use of backward error recovery in

critical, real-time systems. In particular, we are concerned with language facilities that

allow programmers to specify how alternate algorithms are to be applied in the event that

1 an error is detected. The best-known approach is the conversation . Many difficulties with

conversations have been pointed out including the lack of any time-out provision and the

possibility of deserter processes. We introduce a new building block for concurrent

programs called the dirrlog and a new backward-error-recovery primitive called the

colloquy that remedy the various limitations of the conversation. The colloquy is

cmstructed from dialogs and provides a general framewnrk fer d~scrlhing hackward errnr

recovery in concurrent programs.

All of the syntactic proposals that we introduce are derived from Adae '. The dialog

and colloquy are proposed as general concepts but the specific syntax for their use is given

as extensions to Ada. The actual syntax is irrelevant; the concepts could be used in many

other programming languages. However, once chosen, a rigid syntax can allow a compiler

to enforce certain of the semantic rules.

In section two, we briefly describe the concept of the conversation and the associated

syntactic proposals that have been made. Issues that have been raised with conversations

are discussed in section three. In section four, we present a syntax for the dialog called the

discuss statement. In section five, we introduce the colloquy and a new statement called

the dialog-sequence which allows the specification of the actions needed for a colloquy. In

section six, we discuss the use of colloquys in the implementation of all previous approaches

to backward error recovery.

~~

'Ada is a registered trademark of the US. Government (Ada Joint Program Office).

50

2. CONVERSATIONS

The conversation is the canonical software fault-tolerance proposal for dealing with

communicating processes. In a conversation a group of processes separately establish

recovery points and begin communicating. At the end of their communication (Le. the end

of the conversation), which may include the passage of multiple distinct sets of

information, they each wait for the others to arrive at an acceptance test for the group. If

they pass the acceptance test, they commit to the information exchange that has transpired

by discarding their recovery points and proceeding. Should they fail the acceptance test,

they all restore their states from the recovery points. No process is allowed to smuggle

information in or oiit by conmiinicatiiig with a process that is mt participating in the

conversation. Conversations can be nested; from the point of view of a surrounding

3 conversation, a nested conversation is an atomic action .

Although not explicitly stated in the literature, it is assumed that if an error occurs

during a conversation such that the acceptance test fails, the 5 u m set of conversant

processes attempt to communicate again once individually rolled back and reconfigured

(rather than proceeding on unrelated activities). It follows that they eventually reach the

5ume acceptance test again. It is also presumed that any other failure of one of the processes

is taken as equivalent to a failure of the acceptance test by all of them.

The processes in a conversation are the components of a system of processes. Error

detection mechanisms for this system consist of announcement of failure by any one of the

components and the single acceptance test. The acceptance test evaluates the combined

states of the component processes with the designed intent of their communications.

Damage assessment is complete before execution begins since the individual states of all the

processes involved in the conversation are suspect, but no other processes are affected. Error

recovery consists of restoring each process to the state it had as it entered the conversation,

and the system of processes continues with its service by allowing each process to re-try

51

the communication perhaps using an alternate mechanism within that process for the

communication activity.

Conversations were originally proposed as a structuring or design concept without any

syntax that might allow enforcement of the rules. Russell has proposed the “Name-

Linked Recovery Block” as a syntax for conversations. The syntax appropriates that of the

recovery block . What would otherwise be a recovery block, becomes part of a

conversation designated by a conversation identifier. The primary and alternate activities

of the recovery block become that process’ primary and alternate activities during the

conversation, and the recovery block’s acceptance test becomes that portion of the

conversation’s acceptance iest appropriate io this process. Tiiz CijiiVePsdoii’P acceptance test

is evaluated after the last conversant reaches the end of its primary or alternate. If any of

the processes fail its acceptance test, all conversants are rolled back.

4

5

6 Kim has examined several more possible syntaxes for conversations . His approaches

assume the use of monitors as the method of communication among processes. He examines 7

the situation from two philosophies toward grouping. In one scheme, the conversing

activities are grouped with their respective processes’ source code, but are well marked at

those locations. In another scheme, the conversing actions of the several processes are

grouped into one place so that the conversation has a single location in the source code. The

issue he is addressing is whether it is better to group the text of a conversation and scatter

the text of a process or to group the text of a process and scatter the text of a conversation.

A third scheme attempts to resolve the differences between the first two.

3. ISSUES WITH CONVERSATIONS

Desertion is the failure of a process to enter a conversation or arrive at the acceptance

test when other processes expect its presence. Whether the process will never enter the

52

conversation, is simply late, or enters the conversation only to take too long or never arrive

at the acceptance test, does not matter to the others if they have real-time deadlines to

meet. Each process may have its own view of how long it is willing to wait, especially

since processes may enter a conversation asynchronously. Whether they protect inter-

process communications or sequential parts of processes, acceptance tests must be reached

and reached on time for the results to be useful. Meeting real-time deadlines is as

important to providing the specified service as is producing correct output. In order to deal

effectively with desertion, especially in critical systems, some form of timing specification

on communication and on sequential codes is vital.

When it needs to communicate, a ijrocess eiiteis a coii\Xisatioii and stays there, perhaps

through many alternate algorithms, until the communication is completed successfully.

The same group of processes are required to be in the alternate interactions as were in the

primary. The recovery action merely sets up the communication situation again. In the

original form of conversation, once a process enters the construct, it cannot break out and

must continue trying with the same set of other processes, including one or more which

may be incapable of correct operation. In practice, when a process fails in a primary

attempt at communication with one group of processes to achieve its goal, it may want to

attempt to communicate with an entirely different group as an alternate strategy for

achieving that goal; in fact, different processes might make different numbers of attempts

at communicating. Conversations do not allow this, although it is not desertion if it is

systematic and intended.

In a conversation, once individually rolled back and reconfigured, the same set of

conversant processes attempt to communicate again, and eventually reach the same

acceptance test again. True independence of algorithms between primary and alternates,

within the context of backward error recovery, might require very different acceptance

tests for each algorithm, particularly if some of them provide significantly degraded

53

services. A single test for achievement of a process’ goal at a particular point in its text

would of necessity have t o be general enough to pass results of the most degraded

algorithm. This might be too general to enable i t to catch errors produced by other, more

strict, algorithms. These considerations suggest the need for separate acceptance tests

specifically tailored for each of the primary and alternate algorithms.

It must also be remembered, that although each process has its own reasons for

participating, there is a goal for the group of processes as well. Rather than combine the

individual goals of the many participants with the group goal in a single acceptance test

(perhaps allowing the programmer to forget some), and rather than replicating the test for

achievement of the group goal within evcry pwticipant, there should be a YbYULUCe ------+

acceptance test for each participant and another for the group.

A final problem with the conversation concept as i t was originally defined, is that if a

process runs out of alternates, no scheme is provided or mentioned for dealing with the

situation.

4. THEDIALOG

We define a diolog to be an Occurrence in which a set of processes:

(a> establish individual recovery points,

(b)

(c>

communicate among themselves and with no others,

determine whether all should discard their recovery points and proceed or restore
their states from their recovery points and proceed, and

(d) follow this determination.

Success of a dialog is the determination that all participating processes should discard

their recovery points and proceed. Failure of a dialog is the determination that they should

restore their states from their recovery points and proceed. Nothing is said about what

54

should happen after success or failure; in either case the dialog is complete. Dialogs may be

properly nested, in which case the set of processes participating in an inner dialog is a

subset of those participating in the outer dialog. Success or failure of an inner dialog does

not necessarily imply success or failure of the outer dialog. Figure 1 shows a set of three

processes communicating within a dialog.

We introduce the discuss statement as a syntactic form that can be used to denote a

dialog. Figure 2 shows the general form of a discuss statement. The dialog_name associates

a particular discuss statement with the discuss statements of the other processes

participating in this dialog, dynumicdy determining the constituents of the dialog. This

association cannot in general be known statically. At execution time, when control enters a

-
Time

- Establish Recovery Point

) - Discard Recovery Point

- Inter-process Communication

Three Processes Communicating in a Dialog
Figure 1

55

DISCUSS dialog-name BY

sequence-of-statements

TO ARRANGE Boolean-expression;

A DISCUSS Statement
Figure 2

process’ discuss statement with a given dialog name, that process becomes a participant in a

dialog. Other participants are any other processes which have already likewise entered

discuss statements with the same dialog name and have not yet left, and any other processes

which enter discuss statements with the same dialog name before this process leaves the

dialog. Either all participants in a dialog leave it with their respective discuss statements

successf.ul, or all leave with them failed, i.e. the dialog succeeds or fails.

The sequence of statements in the discuss statement represent the actions which are

this process’ part of the group’s actions within their dialog. Any inter-process

communication must take place within this sequence of statements (i.e. be protected by a

dialog). The discuss statement fails if an exception is raised within it, if an enclosed

dialog-sequence (see belowj fails, or if any timing constraint is violated.

The Boolean-expression is an acceptance test on the results of executing the sequence

of statements. It represents the process’ local goal for the interactions in the dialog. It is

evaluated after execution of the sequence of statements. If this Boolean expression or that

in the corresponding discuss statement of any other process participating in this dialog is

evaluated false, the discuss statement of each participant in the dialog fails. If all of the

local acceptance tests succeed, the common goal of the group, i.e. the global acceptance test is

evaluated. If this common goal is true, the corresponding discuss statements of all

participants in the dialog succeed; otherwise they fail. Syntactically, the common goal is

56

specified by a parameterless Boolean function with the same name as the dialog name in the

discuss statement.

We stated that the participants in a particular dialog cannot be known statically.

There may be, say, three processes whose texts contain references to a particular dialog

name. If two of them enter a dialog using that name, questions might arise about

participation of the third. The third process may be executing some other portion of its

code so that it is unlikely to enter a dialog of that name in the near future. If the two

processes reach and pass their acceptance tests, they, being the only participants in the

dialog, can leave it -- the third process is not necessary to the dialog, so is not a deserter. If

the dialog fails due to an acceptance test c~r a t i ~ e z u t (see belew!, the prcb!em is not

guaranteed to be the absence of the third process, so again it is not (necessarily) a deserter.

If the dialog has no time limit specified (see below), that had to be by conscious effort of the

programmer, so the two processes becoming "hung" in the dialog while waiting for the third

was not unplanned.

The dialog names used in discuss statements are required to be declared in dialog

declarations. The general form of a dialog declaration is:

DIALOG function-name SHARES (name-list) ;

The function-name is the identifier being declared as a dialog name (and the name of the

function defining the global acceptance test). The names mentioned in the name-list are

the names of shared variables which will be used within dialogs that use this dialog name.

This includes variables used within the function that implements the global acceptance

test. Only a variable so named may be used within a discuss statement, and then only

within discuss statements using a dialog name with that variable's name in its dialog

declaration. The significance of these rules is that the set of shared variables can be locked

by the compiler and execution-time support system to prevent smuggling. In effect, the

actions of the dialog's participants are made to appear atomic to other processes with respect

57

to these variables. (Our implementation, not described here, also prevents smuggling via

messages or rendezvous).

The Boolean function named by the dialog name is evaluated after all processes in the

dialog have evaluated their respective Boolean expressions and they all evaluate to true. It

is only evaluated once for an instance of the dialog; i.e. it is not evaluated by each

participating process. Thus no process can leave a dialog until all processes currently in

that dialog leave with the same success, and success involves the execution of both a local

and a global acceptance test.

5. THE COLLOQUY

A colloquy is a semantic construct that solves the problems of conversations. Unlike

conversations, the rules of order and participation are well-defined and explicitly laid out.

A colloquy is a collection of dialogs. At execution time, a dialog is an interaction

among processes. Each individual process has its own local goal for participating in a dialog,

but the group has a larger global goal; usually providing some part of the service required

of the entire system. If, for whatever reason, any of the local goals or the global goal is not

achieved, a backward error recovery strategy calls for the actions of the particular dialog to

be undone. In attempting to ensure continued service from the system, each process may

make another attempt at achieving its original local goal, or some modified local goal

through entry into a different dialog. Each of the former participants of the now defunct

dialog may choose to interact with an entirely separate group of processes for its alternate

algorithm. The altered constituency of the new dialog(s) most certainly requires new

statementh1 of the original global goal. The set of dialogs which take place during these

efforts on the processes' part is a colloquy. A set of four processes engaged in a colloquy that

involves three dialogs is shown in Figure 3.
*r

Time

Four Processes in a Colloquy of Three Dialogs
Figure 3

A colloquy, like a dialog or a rendezvous in Ada, does not exist syntactically but is

entirely an execution-time concept. The places where the text of a process statically

announces entry into colloquys are marked by a variant of the Ada select statement called

a dialog-sequence.

The general form of a dialogsequence is shown in Figure 4. At execution time, when

control reaches the select keyword, a recovery point is established for that process. The

process then attempts to perform the activities represented in Figure 4 by a t tempt-1. The

attempt is actually a discuss statement followed by a sequence of statements. To ensure

proper nesting of dialogs and colloquys, a discuss statement may appear only in this

context. If the performance of these activities is successfd, control continues with the

statements following the dialog-sequence. The term "success" here means that no

defensive, acceptability, or timing checks occurring within the attempt detected an error,

and that no exceptions (if the language has exceptions) were propagated out to the attempt's

discuss statement. If the attempt was not successful, the process' state is restored from the

59

SELECT
a t tempt-1

a t tempt-2

a t temp t-3

OR

OR

TIMEOUT simple-expression
sequence -of-statements

ELSE

END SELECT;
sequence -of-statements

Dialog-Sequence
Figure 4

recovery point and the other attempts will be tried in order. Thus, the dialog-sequence

enables the programmer to provide a primary and a list of alternate algorithms by which

the process may achieve its goals at that locus of its text.

Exhaustion of all attempts with no success brings control to the else part after

restoration of the process' state from the recovery point. The else part contains a sequence

of statements which allows the programming of a "last ditch" algorithm for the process to

achieve its goal. If this sequence of statements is successful, control continues after the

dialog-sequence. If not, or if there was no statement sequence, the surrounding attempt

fails.

Timing constraints can be imposed on colloquys (and hence on dialogs). Any

participant in a colloquy can specify a timing constraint which consists of a simple

expression on the timeout part of the dialog-sequence. Absence of a timing constraint

must be made explicit by replacing the simple expression with the keyword never. A

timing constraint specifies an interval during which the process may execute as many of the

attempts as necessary to achieve success in one of them. Should an attempt achieve success

60

or the list of attempts be exhausted without success before expiration of the interval,

further actions are the same as for dialog-sequences without timing specifications.

However, if the interval expires, the current attempt fails, the process' state is restored

from the recovery point, and execution continues at the sequence of statements in the

timeout part. The attempts of the other processes in the same dialog also fail but their

subsequent actions are determined by their own dialog-sequences. If several participants in

a particular colloquy have timing constraints, expiration of one has no effect on the other

timing constraints. The various intervals expire in chronological order. As with the else

part, the timeout part allows the programming of a "last ditch" algorithm for the process to

achieve its goal, and is really a form of forward recovery since its effects will not be

undone, at least at this level. If the sequence of statements in the timeout part is

successful, control continues after the dialogsequence. If not, or if there were no

statement sequence, the surrounding attempt fails.

In any attempt, a statement sequence (which is logically outside the dialog-sequence)

can follow the discuss statement to provide specialized post-processing after the recovery

point is discarded if the attempt succeeds. I t is not subject to this dialog-sequence's timing

constraint.

The programmer is reminded by its position after the timeout part that the else part

is not protected by the timer, and that i t is reached only after other (potentially time-

consuming) activities have taken place. The structure of the dialog-sequence also requires

no acceptance check on these activities. The implication of these two observations is that

the last ditch activities need to be programmed very carefully.

A fail statement may occur only within a sequence of statements contained within a

dialog-sequence. Execution of a fail statement causes the encompassing attempt to fail.

The fail statement is intended for checking within an attempt. For example, i t can be used

to program explicit defensive checks on inputs such as:

61

I F input -var iab le < lower-bound THEN

END I F ;
FAIL;

It can also be used to simplify the logical paths out of an attempt should some internal case

analysis reach an "impossible" path. With the fail statement, the programmer does not have

to make the code for the attempt complicated by providing jumps or other paths to the

acceptance test or to insure that some part of the test is always false for such a special

path. The fail statement can also be used to provide sequences of statements for the else

and timeout parts that make failure explicit rather than implicit (i.e. failure is indicated

by their absence).

6. OTHER LANGUAGE FACILITIES

8 9 Dialog-sequences can be used to construct deadlines , generalized exception handlers ,

recovery blocks, traditional conversations, exchanges'', and s-conversations". Thus the

colloquy is at least as powerful as each of these previously proposed constructs for

provision of fault tolerance. For the sake of brevity, we will illustrate only the

programming of a recovery block.

A recovery block is a special case of a colloquy in which there is only one process

participating, every dialog uses the same acceptance test, there is no timing requirement,

and there are no "last ditch" algorithms to prevent propagation of failures of the construct.

Figure 5 shows a dialog-sequence that is equivalent to the recovery block shown in Figure

6. The use of the fail statement in the dialog-sequence makes explicit the propagation of

the error to a surrounding context just as does the else error closing of the recovery block.

In the dialog-sequence, the Boolean expression is repeated in the discuss statements rather

than gathered into the dialog function because we want to be able to include local variables

in it as a programmer of the recovery block would. Should an error be detected in

statement-sequence-1, the state is restored and statement-sequence-2 is executed, and so on.

62

FUNCTION abc RETURNS boolean I S BEGIN RETURN TRUE; END abc;

DIALOG abc SHARES () ;
. . . .

. . .

SELECT
DISCUSS abc BY

TO ARRANGE boolean-expression-1;
s t a t eme n t -seque nc e-1

OR
DISCUSS abc BY

TO ARRANGE boolean-expression-I;
statement-sequence-2

OR
DISCUSS abc BY

TO ARRANGE boolean-expression-1;
statement-sequence-3

T IMEOUT NEVER ;

ELSE

END SELECT;
FAIL; - O m i t t i n g t h i s l i n e does not change t h e semantics.

Specification of Colloquy for a Recovery Block
Figure 5

ENSURE boo I ean-exp ress i on-1 BY
statement-sequence-1

ELSE BY
s t a t eme n t -seque nce-2

ELSE BY
statement-sequence-3

ELSE ERROR:

A Recovery Block
Figure 6

Finally, should an error be detected in statement-sequence-3. the state is restored and the

error is signaled in a surrounding context. An error may be detected by evaluation of

63

boo I eon-express i on-1 to false, or by violation of some underlying interface (such as raising

of an exception).

7. CONCLUSIONS

We have introduced a new linguistic construct, the colloquy, which solves the

problems identified in the earlier proposal, the conversation. We have shown that the

colloquy is at least as powerful as recovery blocks, but it is also as powerful as all the other

language facilities proposed for other situations requiring backward error recovery;

recovery blocks, deadlines, generalized exception handlers, traditional conversations, s-

conversations, and exchanges.

The major features that distinguish the colloquy are:

The inclusion of explicit and general timing constraints- This allows processes to

protect themselves against any difficulties in communication that might prevent them

from meeting real-time deadlines. I t also effectively deals with the problem of

deserter processes.

The use of a two-level acceptance test. This allows much more powerful error

detection because it allows the tailoring of acceptance tests to specific needs.

The reversal of the order of priority of alternate communication attempts and of

recovery points. This allows processes to choose the participants in any alternate

algorithms rather than being required to deal with a single set of processes.

A complete and consistent syntax that is presented as extensions to Ada but could be

modified and included in any suitable programming language.

Sample programs that have been written (but not executed) using the colloquy show

that extensive backward error recovery can be included in these programs simply and

elegantly. We are presently implementing these ideas in an experimental Ada testbed.

64

This paper is not a formal statement of these concepts. The reader may correctly feel

that important detail has been omitted. We are only able to present informally the key

concepts in a paper of this length. For more details, see [12].

8. ACKNOWLEDGEMENTS

This work was sponsored by NASA grant number NAG1-260 and has been cleared for

publication by the sponsoring organization.

65

REFERENCES

(1) Randell B., "System Structure for Software Fault Tolerance," IEEE Transactions on

Software Engineering, SE-1(2), pp. 220-232, June 1975.

(2) Reference Manual f o r the Ada Programming Language, ANSI/MIL-STD-l815A, 22

January 1983.

(3) Lomet D.B., "Process Structuring, Synchronization and Recovery Using Atomic

Actions," SIGPLAN Notices, 12(3), pp. 128-137, March 1977.

(4) Russell D.L., M.J. Tiedeman, "Multiprocess Recovery Using Conversations," Digest of

Papers FTCS-9: Ninth Annual Symposium on Fault-Tolerant Computing, p. 106, June

1979.

(5) Horning J.J., et al., "A Ptogram Structure for Error Detection and Recovery," pp. 171-

187 in Lecture Notes in Computer Science Vol. 16, ed. E. Gelenbe and C. Kaiser,

Springer-Verlag, Berlin, 1974.

(6) Kim K.H., "Approaches to Mechanization of the Conversation Scheme Based on

Monitors," IEEE Transactions on Software Engineering, SE-8(3), pp. 189-197, May

1982.

(7) Per Brinch Hansen, The Architecture of Concurrent Programs, Prentice-Hall,

Englewood Cliffs, NJ. 1977.

(S) Campbell R.H., K.H. Horton, G.G. Belford, "Simu!ations of a Fault-Tolerant Deadline

Mechanism," Digest o f Papers FTCS-9: Ninth Annual Symposium on Fault-Tolerant

Computing, pp. 95-101,1979.

66

(9) Salzman E.J., An Experiment in Producing Highly Reliable Software, M.Sc.

Dissertation, Computing Laboratory, University of Newcastle upon Tyne, 1978.

(10) Anderson T., J.C. Knight, "A Framework for Software Fault Tolerance in Real-Time

Systems," IEEE Transactions on So f Ware Engineering, SE-9(3), pp. 355-364, May

1983.

(11) Jalote P., R.H. Campbell, "Fault Tolerance Using Communicating Sequential Processes,"

Digest of Papers FTCS-14: Fourteenth International Conference on Fault-Tolerant

Computing, pp. 347-352,1984.

(12) Gregory S.T., Programming Language Facilities f o r Comprehensive Software Fault-

Tolerance in Llistributed Red-Time Systems, Ph.D. Dissertation, Department of

Computer Science, University of Virginia, 1985.

DISTRIBUTION LIST

Copy No.

1 - 3 National Aeronautics and
Space Administration

Langley Research Center
Hampton, VA 23665
Attention: Mr. Edmond H. Senn

ACD, Computer Science and
Applications Board

*
4 - 5 NASA Scientific and Technical Information

Facility
P. 0. Box 8757
Baltimore/Washington International Airport
Baltimore, MD 21240

6 - 7 J. C. Knight

8 A. C. Weaver

9 - 10 E. H. Pancake
Clark Hall

.
11 SEAS files

*
One reproducible copy

JO# 5736 CMS

UNIVERSITY OF V I R G I N I A
School of Engineering and Applied Science

The University of Virginia’s School of Engineering and Applied Science has an undergraduate
enrollment of approximately 1,500 students with a graduate enrollment of approximately 500. There are
125 faculty members, a majority of whom conduct research in addition to teaching.

Research is a vital part of the educational program and interests parallel academic specialties. These
range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical and
Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, Materials
Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer Science.
Within these disciplines there are well equipped laboratories for conducting highly specialized research.
Al l departments offer the doctorate; Biomedical and Materials Science grant only graduate degrees. In
addition, courses in the humanities are offered within the School.

The University of Virginia (which includes approximately 1,500 full-time faculty and a total full-time
student enrollment of about 16.000). also offers professional degrees under the schools of Architecture,
Law, Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College of
Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant to the
engineering research program. The School of Engineering and Applied Science is an integral part of this
University community which provides opportunities for interdisciplinary work in pursuit of the basic goals
of education, research, and public service.

